A New Stereocontrolled Route to (-)-Shikimic Acid

Takashi Kamikubo and Kunio Ogasawara* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77

(Received August 5, 1996)

A new stereocontrolled route to (-)-shikimic acid, the component of the fruit of shikimi tree, *Illicium religiosum*, and the key biogenetic precursor of a variety of aromatic natural products, has been developed using the chiral 2,5-cyclohexadienol synthon.

(-)-Shikimic acid (1), isolated from the fruit of shikimitree, *Illicium religiosum*, in 1885¹ is known as the key biogenetic precursor of a variety of aromatic natural products though its biogenetic importance was not established until 1950s. ^{2,3} Since its first synthesis reported in 1960,⁴ a number of approaches including chiral syntheses have been reported to date.^{3,5} However, there were very limited procedures suitable for its facile stereo- and enantio-controlled construction. Because we have developed an efficient procedure for the preparation of a synthon⁶ 2 serving as chiral 2,5-cyclohexadienol, either by enzymatic⁷ or by catalytic⁸ procedure, we were interested in using the chiral synthon 2 for the stereoselective construction of (-)-shikimic acid (1). We report here a new enantio- and stereo-controlled route to (-)-shikimic acid (1) using the synthon 2 as the starting material.

To discriminate two double bonds contained in the synthon 2, the methoxymethyl (MOM) ether 4 generated from 2 was treated with *N*-bromosuccinimide to give the single bromo-ether⁹ 5. The remaining double bond in 5 was next dihydroxylated from the convex face to give stereoselectively the diol 6 which was transformed to the tri-MOM ether 7. On reductive treatment, the bromo-ether 7 regenerated the olefin functionality to give 8, $\left[\alpha\right]_{D}^{26} + 22.7$ (*c* 0.8, CHCl₃). Overall yield of 8 from (+)-2 was

39% in six steps (Scheme 1).

Thermolysis of **8** in diphenyl ether at 260 °C smoothly caused retro-Diels-Alder reaction and gave the cyclohexenol **9**, $[\alpha]_D^{26}$ –10.1 (c 1.1, CHCl₃), in 86% yield after 30 min. Treatment of **9** with bromomethyldimethylsilyl chloride under basic conditions afforded the bromomethylsilyl ether^{10,11} **10** which on treatment with tributylstannane in the presence of azobisisobutyronitrile (AIBN) furnished the single cyclic silyl

Scheme 1. Reagents and conditions: i) CH₃OCH₂Cl (MOM-Cl), Pr₂EtN, CH₂Cl₂ (88%); ii) K₂CO₃, MeOH: iii) NBS, CH₂Cl₂ (67% from 3); iv) OsO₄, N-methylmorpholine N-oxide (NMO), THF-H₂O (3:1 v/v) (86%); v) MOM-Cl, Pr₂EtN, CH₂Cl₂ (97%); vi) Zn, EtOH-AcOH (10:1 v/v) (79%).

Scheme 2. Reagents and conditions: i) PhOPh, NaHCO $_3$, reflux (86%); ii) ClSi(Me) $_2$ CH $_2$ Br, Et $_3$ N, DMAP, CH $_2$ Cl $_2$, 0 °C; iii) Bu $_3$ SnH, AIBN, benzene, 80 °C; iv) 30% H $_2$ O $_2$, KHCO $_3$, MeOH-THF (1:1 v/v), reflux (89% from 9); v) ClSiMe $_2$ 'Bu, imidazole, DMF (100%); vi) methanesulfonyl chloride, 'Pr $_2$ EtN, DMAP, CH $_2$ Cl $_2$; vii) TBAF, THF (65% from 13); viii) SO $_3$ -Py, DMSO-Et $_3$ N (3:1 v/v); ix) NaClO $_2$, NaH $_2$ PO $_4$ -2H $_2$ O, 2-methyl-2-butene, 'BuOH-H $_2$ O (4:1 v/v), acid workup, then CH $_2$ N $_2$, CH $_2$ Cl $_2$ (77% from 15); x) AcCl (cat.), MeOH (98%); xi) 1 M NaOH (aq.), THF-H $_2$ O (1:1 v/v) (96%).

ether **11** by radical process. ^{10–12} Oxidation of **11** with hydrogen peroxide in the presence of potassium hydrogen carbonate¹³ gave the diol **12**, $\left[\alpha\right]_{D}^{26}$ +45.8 (*c* 1.1, CHCl₃), in 89% overall from **9**.

Having introduced the requisite carbon framework, primary hydroxy group of 12 was selectively silylated to give the tertbutyldimethylsilyl (TBS) ether 13, $\left[\alpha\right]_{D}^{27}$ +38.6 (c 1.3, CHCl₃), which was sequentially O-mesylated and de-O-silylated to give the primary alcohol 15, $[\alpha]_D^{28}$ +46.1 (c 0.6, CHCl₃), via 14, in 65% overall yield. The primary alcohol 15 was then oxidized with sulfur trioxide-pyridine complex¹⁴ to afford the α,β unsaturated aldehyde 17 via the formyl-mesylate 16 by concomitant elimination under the conditions. Further oxidation of the aldehyde 17 with sodium chlorite in a phosphate buffer solution¹⁵ followed by esterification of the oxidation product with diazomethane afforded the methyl shikimate tri-MOM ether (18), $[\alpha]_0^{27}$ -85.5 (c 1.6, CHCl₃), in 77% overall yield from 15. Removal of the MOM groups of 18 gave methyl shikimate¹⁶ (19), mp 116.5-117.5 °C, $[\alpha]_D^{29}$ -125.5 (c 0.9, EtOH) {lit.: mp 113-114 °C, $[\alpha]_D^{20}$ –130 (*c* 1.88, EtOH), ^{16a} mp 115-116.5 °C, $[\alpha]_D^{20}$ –125 (*c* 1.8, EtOH) ^{16b}}, in 98% yield. Finally, alkaline hydrolysis of **18** afforded (–)-shikimic acid ^{16b,17} (**1**), mp 184-186 °C, $[\alpha]_D^{25}$ -163.7 (*c* 0.59, H₂O) {lit.: mp 184-186 °C, $[\alpha]_D^{20}$ -170 (*c* 0.86, H₂O); ^{16b} mp 183-184.5 °C, $[\alpha]_D^{21}$ -170 (*c* 1.18, H₂O)¹⁷}, in 96% yield after purification by ion-exchange resin. Total yield of (-)-shikimic acid (1) from the synthon 2 was 14% in 17 steps (Scheme 2).

In summary, the present study illustrates a new utility of the chiral synthon 2 for the construction of (-)-shikimic acid (1) and the procedure employed may be in particular useful for the preparation of labeled materials for biogenetic experiments.

References and Notes

J. F. Eykmann, Rec. Trav. Chim., 4, 32 (1885); J. F.

- Eykmann, Ber., 24, 1278 (1891).
- 2 For a pertinent review: M. M. Campbell, M. Sainsbury, and P. A. Searle, *Synthesis*, **1993**, 179.
- 3 P. M. Dewick, *Nat. Prod. Rep.*, **12**, 579 (1995) and the previous reports.
- 4 R. McCridle, K. H. Overton, and R. A. Raphael, *J. Chem. Soc.*, **1960**, 1560.
- 5 Recent examples: S. Jiang, B. Mekki, G. Singh, and R. H. Wightman, *Tetrahedron Lett.*, **35**, 5505 (1994).
- 6 K. Ogasawara, Pure & Appl. Chem., 66, 2119 (1994).
- 7 S. Takano, Y. Higashi, T. Kamikubo, M. Moriya, and K. Ogasawara, *Synthesis*, 1993, 948.
- 8 K. Hiroya, Y. Kurihara, and K. Ogasawara, Angew. Chem., Int. Ed. Engl., 34, 2287 (1995).
- 9 S. Takano, M. Moriya, Y. Higashi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1993, 177.
- H. Nishizawa, T. Kitajima, M. Matsumoto, and K. Itoh, *J. Org. Chem.*, 49, 2298 (1984).
- 11 G. Stork and M. Kahn, *J. Am. Chem. Soc.*, **107**, 500 (1985)
- For a pertinent review: G. R. Jones and Y. Landais, Tetrahedron, 52, 7599 (1996).
- 13 K. Tamao, N. Ishida, T. Tanaka, and M. Kumada, Organometallics, 2, 1694 (1983); K. Tamao, N. Nishida, Y. Ito, and M. Kumada, Org. Synth., 69, 96 (1990).
- 14 J. R. Parikh and W. v. E. Doering, J. Am. Chem. Soc., 89, 5505 (1967).
- B. O. Lindgren and T. Nilsson, *Acta Chem. Scand.*, 27, 888 (1973).
- a) H. O. L. Fischer and G. Dangschat, *Helv. Chim. Acta*,
 18, 1206 (1935). b) G. W. J. Fleet, T. K. M. Shing, and
 S. M. Warr, *J. Chem. Soc.*, *Perkin Trans. 1*, 1984, 905.
- J. L. Pawlak and G. A. Berchtold, J. Org. Chem., 52, 1765 (1987).